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Abstract

A comprehensive air quality modeling project was carried out to simulate regional source
contributions to primary airborne particle concentrations in California’s central Valley. A three
week stagnation episode lasting from December 15, 2000 to January 7, 2001, was chosen for
study using the air quality and meteorological data collected during the California Regional
PM10/PM2.5 Air Quality Study (CRPAQS). The UCD/CIT source oriented airquality model
was applied to this episode using both the source-oriented external mixture configuration and
an internal mixture with artificial tracers so that source contribution information could be re-
trieved in less time.

The majority of the predicted and measured primary airborneparticulate matter mass was
composed of elemental carbon (EC) and organic carbon (OC). Previous work has shown that
base case EC and OC predictions made by the UCD/CIT model are in good agreement with
observations. Model results from the current study show that the highest EC and OC concen-
trations occur in urban areas and along transportation corridors where primary emissions are
largest. Lower concentrations of primary EC and OC are predicted at rural locations in the
SJV.

Source contributions predicted by the UCD/CIT air quality model were compared to receptor-
oriented source apportionment results produced by the Chemical Mass Balance (CMB) model
at Fresno and Angiola. The relative contributions from major sources predicted by the UCD/CIT
model agree with the CMB model results, building confidence in the accuracy of the UCD/CIT
model predictions at locations where the CMB results are notavailable. Wood smoke was
identified as the major regional source of primary OC in airborne particles in the winter SJV
episode, accounting for approximately 50% of the total PM2.5. Diesel engines were also found
to be a significant contributor to primary PM2.5 OC and the largest contributor to the predicted
PM2.5 EC averaged over a typical day. EC contributions from wood smoke increased at night
and sometimes reached as high as 40% of the total PM2.5 EC. The contribution of fugitive dust
to primary PM2.5 mass was also predicted to be significant, especially in rural areas, but this
result is likely biased high by the lack of an appropriate diurnal profile for dust emissions.

The results of the current study suggest that reductions in wood burning and diesel en-
gine activity would reduce the regional concentration of primary PM2.5 during severe winter
stagnation events in the SJV.
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1 Introduction

Fresno, Bakersfield and Sacramento rank 2nd, 3rd and 9th in the list of top 25 cities most polluted
by airborne particles with diameters smaller than 2.5µm (PM2.5) (American Lung Association,
2005). These statistics place the San Joaquin Valley (SJV) in central California among the most
heavily polluted air basins in the United States. Numerous studies have identified strong corre-
lations between PM2.5 and various respiratory (von Klot et al., 2002; Murr et al., 2004) and car-
diovascular (Delfino et al., 1996; de Hartog et al., 2003) symptoms. One set of hypotheses about
the mechanistic link between airborne particles and healtheffects focuses on the source-origin and
chemical composition of primary particles (emitted directly from sources). A better understanding
of regional source contributions to primary particulate matter in the SJV would help to identify
threats to public health and provide the basis for future regulations designed to improve air quality.

The most severe SJV PM2.5 episode in recent history occurred during the California Regional
PM10/PM2.5 Air Quality Study (CRPAQS) in December 2000 and January 2001. Elevated fine
PM concentrations occurred throughout the entire SJV over a3 week period (Chow et al., 2006a).
The recorded hourly PM2.5 concentrations exceeded 200µg m−3 in Bakersfield (Herner et al.,
2005) (which is approximately 5.7 times the National Ambient Air Quality Standard for 24-hour
average PM2.5 concentrations). A database containing measured gaseous and particulate matter
concentrations, meteorological measurements, and emissions estimates has been constructed as
a part of the CRPAQS study to support an evaluation of the underlying cause for this severe air
quality problem and to develop cost-effective emission control strategies.

The purpose of this study is to (1) develop a computationallyeffective source-oriented air qual-
ity model for the simultaneous determination of source contributions to the regional distribution of
primary PM mass in multiple size fractions, (2) validate themodeled source contribution to primary
PM against the CMB source apportionment calculation based on measured molecular markers and
(3) apply the model to study regional source contributions to primary PM2.5 concentrations in
California’s central Valley during CRPAQS.

2 Background

Receptor-oriented statistical models are the traditionaltools used in air quality studies to iden-
tify source contributions to PM concentrations. These models are based on the principle of mass
conservation for non-reactive chemical components in the emitted particles (Watson et al., 2002).
The Chemical Mass Balance (CMB) model requires emissions profiles from each major source
category to determine the source contributions to primary particle concentrations (Watson et al.,
2001). The source resolution of CMB models is usually limited by the co-linearity of the profiles.
For example, diesel and gasoline engine exhaust particles are hard to separate because the emission
characteristics of the two sources are very similar (Watsonet al., 1994). In the past decade, vari-
ous source-specific organic tracers have been identified from different emission source categories
(Schauer et al., 1996; Fraser and Lakshmanan, 2000). The application of the organic molecular
markers can greatly improve the resolution and reduce the uncertainties associated with statistical
source apportionment methods (Chow et al., 2006b).

Statistical source apportionment techniques have been applied in the past to determine the
source contributions to PM at receptor sites in central California for primary PM10 (Chow et al.,
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1992) and PM2.5 (Schauer et al., 1996; Chow et al., 2006b; Chen et al., 2007) concentrations.
Residential wood combustion was identified as the major contributor to PM2.5 concentrations dur-
ing wintertime PM episodes in central California, with a valleywide average contribution of 24%.
Primary emissions from motor vehicles account for 10-15% ofthe PM2.5 mass (Chen et al., 2007).

Recent research has shown that regional transport of PM precursors and fine PM can also have a
significant impact on local air quality at receptor sites (Chow et al., 1996; Solomon and Magliano,
1999; Ying and Kleeman, 2006; MacDonald et al., 2006). Thus,future emission control plans
will need to take a regional approach. However, the receptor-oriented statistical tools can only be
applied at locations where detailed and accurate PM chemical composition has been measured.
The cost of operating a large-scale receptor-oriented study to obtain regional source attribution
information is almost prohibitive due to intensive field sampling and laboratory analysis. New
tools are needed to efficiently identify the contributions of emission sources to observed PM on a
regional scale, so that air quality improvement strategiescan consider the impact of surrounding
regions on specific non-attainment areas.

3 Model Description

The UCD/CIT source-oriented air quality model tracks particles emitted from different sources
separately through the simulated atmosphere in the presence of all major aerosol processes (emis-
sions, transport, deposition, gas-to-particle conversion, coagulation). The UCD/CIT model can
also be configured to represent the particles as an internal mixture in which particles emitted from
different sources into a single virtual particle class and thus no source information is explicitly
retained in the model simulation. In this study, a unique inert artificial tracer, which is empirically
set to be 1% of the total mass of the chemical species emitted from each source category, is au-
tomatically injected into the model emissions. Variationson this approach have been described
in previous studies (Ying and Kleeman, 2004; Bhave et al., 2004; Lane et al., 2007). The 1% in-
jected inert mass does not significantly change the particleradius and the dry deposition rate. The
evolution of the tracer species concentrations is explicitly tracked along with other chemical com-
ponents of the particles. The simulated artificial tracer concentration for a given source directly
correlates with the amount of PM mass emitted from that source. After determining the amount of
primary mass emitted from each source, an appropriate source-specific emission profile is used to
recover the source contribution of each chemical componentto the total primary PM mass using
the following equation:

Ci,j = Ai,j × Ti (1)

whereCi,j represents the concentration of thejth chemical component from theith particle emis-
sion category.A is the source profile matrix so thatAi,j represents the mass of thejth chemical
species per unit mass of PM emitted from theith emission source.Ti is the model predicted particle
mass concentration for theith source using artificial tracer mass for that source.

The internal mixture with artificial tracer method greatly reduces the computation time of cal-
culation, and the memory / external storage footprint for the source apportionment of primary
particulate matter. The number of model particle species isincreased only slightly to track the
concentration of the artificial tracers from each source. This allows the efficient source apportion-
ment for a large number of primary particle sources on a regional scale.
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The full source-oriented external mixture aerosol representation more accurately simulates the
physical/chemical properties of particles (especially their hygroscopicity) compared to the internal
mixture approach (Kleeman et al., 1997). The internal mixture particle representation is an ap-
proximation made to increase efficiency that may lead to someinaccurate predictions for particle
composition and size distributions. It is thus important toverify that the overall concentrations
predicted by the internal and external particle representation are similar for each source appor-
tionment exercise using the internal mixture method. Previous studies show little difference in the
predicted primary particle concentrations using internaland external mixed particle representations
(Ying et al., 2004, 2007). In this study, the source apportionment results for the primary particu-
late matter using the internal mixture particle representation are compared with the results from a
full source-oriented external mixture particle simulation to further validate the internal mixture re-
sults. Differences between the internal vs. source-oriented external results reflect the intrinsically
different behavior of particles due to compositional changes as well as numerical approximations
necessary in the internal mixture simulation.

Both the source-oriented external mixture and internal mixture representations require that the
emissions inventory be divided into different source categories with similar source profiles. The
source-oriented calculations retain the source separation throughout the entire model simulation
providing explicit source apportionment results. The internal mixture approach requires that a
representative source profile be specified to transform tracer concentrations into chemical species
concentrations at the end of the simulation. This step can introduce approximation error into the
calculation when sources that have different source profiles are lumped into the same category
tracked by a single artificial tracer. Several approaches can be used to estimate the effective source
profiles at a receptor location under these conditions. In this study, the emission profiles for each
source category over the entire model domain were averaged to generate the representative cate-
gory profile. Figure 1 shows the average fraction of elemental carbon (EC) and organic compounds
(OC) per unit of primary mass emitted from fugitive dust, road dust, diesel engines, catalyst-
equipped gasoline engines, non-catalyst-equipped gasoline engines, wood smoke, meat cooking,
combustion of high-sulfur fuel, and other sources using this approach. The domain-average source
profile may differ from local conditions since emissions within each category are the sum of many
sub-categories that each use slightly different emission profiles (example: idling diesel engines
and loaded diesel engines have different emissions profilesbut they are both averaged into the
diesel category). One possible solution to this problem is to calculate average emissions profiles
for sub-domains so that greater heterogeneity can be represented. A future study will be con-
ducted to explore this alternative way of estimating emission profiles for internally mixed source
apportionment calculations.

4 Model Application

The internally mixed air quality model with artificial tracers was applied to study the source contri-
butions to primary PM2.5 mass and chemical composition in the central Valley of California during
December 15, 2000 - January 7, 2001. The simulation was carried out using 4 km horizontal grid
resolution with 190 x 190 grid cells in a domain that covers the entire central Valley of California
(see Figure 1 of Ying et al. (2008b)). The computation domaincovers land areas with surface ele-
vation below 2000 meters and ocean regions 100 km off the coastal line. Details about the model

5



setup and the preparation of the model meteorology, initialand boundary condition fields are de-
scribed by Ying et al. (2008b) and are not repeated here. The source contributions to secondary PM
and total PM2.5 and PM0.1 mass concentrations are also predicted and the results are documented
in a separate paper (Ying et al., 2008a).

Raw gridded emissions of NOx, SOx, VOC, NH3 and PM and the associated EIC (Emission
Identification Code) number for the entire modeling episodewere provided by the California Air
Resources Board (CARB). Emissions were processed further to apply VOC and PM source pro-
files and to split emissions into different source categories. In the current study, emissions from
fugitive dust, road dust, diesel engines, catalyst-equipped gasoline engines, non-catalyst-equipped
gasoline engines, wood combustion, food cooking, high-sulfur fuel combustion, and other sources
are separated into into different categories based on theirEIC number. Table 1 lists the total gas
and PM emissions for all the model emission source categories for a typical weekday (December
19, 2000) during the study episode. Based on the totals from the emission inventory, wood smoke
accounts for most of the OC emissions while diesel engines account for the majority of the EC
emissions.

5 Results

The base case model results have been verified by comparison with measured gas and particle con-
centrations and the calculation of model performance statistics. Routine measurements were made
throughout the December 15, 2000 - January 7, 2001 period with more detailed measurements of
particle size and composition made during three Intensive Operating Periods (IOPs) (Dec 15-18,
2000; Dec 26-28, 2000; Jan 4-7, 2001). A detailed discussionof the base case results can be found
in a separate manuscript (Ying et al., 2008b). In summary, good agreement for both gas and particle
phase pollutants was found at most measurement sites. The model correctly simulated the regional
buildup of nitrate concentrations during IOP2 and the subsequently elevated nitrate concentrations
during IOP3. The general agreement between the predicted and observed concentrations by the
base case model simulation provides a solid foundation for the source apportionment of primary
PM in this study.

5.1 Internal Versus External Mixture Source Apportionment

Figure 2 shows the calculated source contribution to 24 houraverage EC, OC, and primary PM2.5

mass on December 28, 2000 using the source-oriented externally mixed and internally mixed par-
ticle representation. In this comparison study, both models are executed using a horizontal grid
resolution of 8 km for computational efficiency. Different symbols on the figure indicate different
source categories. For each source category, the predictedconcentrations at five stations (Bethel
Island, Sacramento, Fresno, Angiola and Bakersfield) are shown on the figure. The source con-
tributions predicted by the internally mixed model with artificial tracers agree very well with the
source-oriented externally mixed aerosol approach for EC,OC and PM2.5 mass concentrations
above 1µg m−3. The slope (k) andR2 values for PM2.5, OC and EC are 1.03(k)/0.987, 1.01/0.996
and 0.88/0.992, respectively. The agreement diverges slightly when the predicted concentrations
are lower than 1µg m−3 with slope andR2 values for PM2.5, OC and EC values 0.956/0.969,
1.17/0.844 and 0.853/0.645, respectively.
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5.2 Comparison with CMB Results

The daily-average primary PM source apportionment predicted by UCD/CIT model was compared
with the results from an independent CMB source apportionment calculation that resolved road
dust, gasoline combustion, diesel combustion, food cooking, and wood burning contributions to
PM2.5 (Chow, 2005; Chow et al., 2006b).

Figure 3 shows the averaged relative source contributions to primary PM2.5 at Angiola (Panel
(a)) and Fresno (Panel (b)) during all 3 IOPs. Fresno is the largest urban area in the SJV while
Angiola represents a typical rural area in the Valley. The mobile source category shown in Figure 3
represents the sum of the source contributions from diesel and gasoline engines. Dust sources were
not included when the relative source contributions were calculated due to large positive bias in
the raw PM emission inventory for fugitive dust (see discussion in section 5.3). The UCD/CIT
and CMB models have very similar source apportionment predictions at both sites. At Angiola,
wood burning was the major source for primary particles, accounting for 45-59% of primary PM2.5

mass (excluding dust particles). The contribution from mobile emission sources ranged from 25-
37% (excluding dust particles). At Fresno, wood burning wasfound to be the dominant source for
primary particles, accounting for 63 - 75% of primary PM2.5 mass (excluding dust particles).

The meat cooking contributions predicted by the UCD/CIT source-oriented model and the
CMB receptor-oriented model are in good agreement at Fresnobut differ significantly at Angiola.
As shown in Figure 3, the relative contribution of meat cooking to primary PM2.5 predicted by
the UCD/CIT model is less than 5%, while the CMB model predicts more than 30%. Cholesterol
is the major organic marker in the meat cooking profile used inthe CMB source apportionment
calculation. Due to the short sampling durations in the CRPAQS study (5-8 hours per sample) and
the low absolute cholesterol concentrations, the measurement error for cholesterol was large and
only limited samples were useful (Chow et al., 2006b). This measurement uncertainty could lead
to the overestimation of the meat cooking contributions by the CMB approach at Angiola.

The daily averaged source contributions at Fresno during all 3 IOPs from UCD/CIT and CMB
models are shown in Figures 4(a) and 4(b), respectively. Wood burning was predicted as the
dominant source of primary PM2.5 by the UCD/CIT model at all times, and the contribution of
meat cooking is consistently below 5µg m−3. CMB predictions also identify wood burning as the
main source of primary PM2.5 at Fresno, but the contribution from meat cooking was calculated to
be greater than 10µg m−3 on some days. Also, CMB predictions show larger day-to-day variation
for primary PM2.5 source apportionments than the UCD/CIT model. As shown in Figure 4(b),
the contribution of wood burning varies from 3 - 35µg m−3. The average of the daily CMB
results across all 3 IOPs differs from the CMB results calculated using aggregate measurements,
suggesting that the daily CMB results have significant uncertainty. Given the uncertainty in the
daily CMB measurements, the level of agreement between daily UCD/CIT and CMB predictions
is considered satisfactory.

The results shown in Figure 3 demonstrate that the source contributions to primary PM2.5 pre-
dicted using UCD/CIT source-oriented air quality model generally agree with the CMB receptor
model predictions at a rural and an urban site during the study period. This builds confidence that
the UCD/CIT model properly represents the major sources andatmospheric processes of primary
PM in this study.
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5.3 Primary Source Apportionment at Receptor Sites

Figure 5 shows the predicted hourly-averaged relative source contributions to PM2.5 EC, PM2.5

OC and PM2.5 mass for Fresno during the study period. The EC and OC mass concentrations from
each source category are derived from the inert tracer concentrations using the average EC and OC
fractions for each source category shown in Figure 1. The relative source contribution was calcu-
lated by dividing the predicted EC and OC mass for each sourcecategory by the total EC and OC
mass concentrations, which are directly predicted by the model. The sum of the mass concentra-
tions do not always total 100% because domain-average emissions profiles used to calculate source
contributions during internally mixed simulations do not always capture emissions variability in
each sub-region (see discussion in Section 3). The error introduced by this approximation is less
than 20% in all cases.

Panel 5(a) shows the calculated source contributions to EC at Fresno during the entire modeling
episode are dominated by emissions from diesel engines withsmaller contributions from wood
smoke. Clear differences in the diurnal variation can be observed for these two EC sources. The
wood smoke EC peaks at approximately 20% during the night andfalls to approximately 0% during
the day when the mixing height increases and wood burning activity for home heating is reduced.
The contribution of EC from diesel engines peaks during daytime hours following the general
traffic pattern. Panel 5(b) shows that approximately 70-80%of the OC in Fresno comes from
wood smoke while approximately 10-15% of the OC originates from meat cooking. Fresno is the
largest population center in the SJV so the contribution from meat cooking is quite significant. This
prediction agrees with the CMB calculations, as shown in Figure 4. Contributions from gasoline
combusition to primary OC are small. The diurnal variation of wood smoke OC peaks during the
night (similar to wood smoke EC). Panel 5(c) shows the relative source contribution to total primary
PM2.5 mass at Fresno. Contributions to secondary PM are not shown here to better illustrate the
diurnal variation of the primary PM contribution from each source category. The detailed source
contribution to secondary PM components will be shown in a companion paper. The relative
contribution of primary PM to total PM2.5 varies from 50-80%, with a daily minimum occurring
at noon or early afternoon when the primary particles are significantly diluted due to increased
mixing height that allows secondary PM formed in the upper atmosphere to reach the surface.
Wood smoke accounts for approximately 50% of the total PM2.5 mass. Dust particles contribute
approximately 10% of the total PM2.5 concentrations. The relative contribution from primary PM
decreased significantly during December 21-23, 2000 and January 6-7, 2001. Further analysis
indicates that the decrease in primary PM during these periods corresponds to two significant
inter-region transport events in the SJV. The details of theinter-region transport analysis will be
documented in a seperate paper.

Figure 6 shows the source contributions to PM2.5 EC, PM2.5 OC and PM2.5 mass concentrations
at Angiola during the entire model episode. Panel 6(a) showsthat EC originates mainly from diesel
engines but does not have clear diurnal variation. Panel 6(b) shows that OC at Angiola is mainly
associated with wood smoke that also does not show a clear diurnal variation. The relatively
constant source contributions throughout the day most likely indicate that the influence from local
sources is small. Panel 6(c) shows the relative source contribution to total PM2.5 mass at Angiola.
Primary PM accounts for 20-50% of the predicted PM2.5 concentration in December 2000 and
approximately 20% in January 2001. Fugitive dust particlesaccount for approximately 40% of
the predicted PM2.5 mass concentration. The high dust contribution predictions are caused by
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the high dust emissions in the raw inventory. Recent analysis of the CARB emission inventory
found that the fugitive dust PM2.5/TSP ratios were likely overestimated in the CARB PM profiles
(Gaffney, 2006). This is likely the cause of the PM2.5 mass over-predictions in the base case model
simulation at Angiola.

5.4 Regional Source Apportionment of Primary PM

Figure 7 shows the source contribution to 24-hour average PM2.5 EC concentrations on December
28, 2000 over the entire computational domain. The concentration scales on each panel are set to
best illustrate the regional distribution of each source. Panel 7(a) shows that high total PM2.5 EC
concentrations occur in the urban areas with maximum concentrations approaching 9µg m−3. In
rural Valley areas, the 24-hour average EC concentrations are approximately 2µg m−3. Significant
outflow from the San Francisco Bay area to the Pacific Ocean canalso be seen. Panel 7(c) shows
that the 24-hr average contribution of wood smoke to PM2.5 EC varies from 0.1 - 0.4µg m−3, with
highest concentration occurring in the populated urban areas in the Valley. Panel 7(d) shows that
diesel engines are the dominant EC source in the modeling domain. The highest predicted diesel
EC concentrations occur in the San Francisco Bay area, whichis the largest urban area in central
California. Diesel EC concentrations are also high in otherurban areas in the central Valley. Rural
EC concentrations from diesel engines are approximately 2µg m−3, which is likely due to the
regional transport of the emissions from Interstate 5 and CAHighway 99 that transect the SJV.
Contributions to PM2.5 EC from gasoline engines (Panel 7e and f) and meat cooking (Panel 7g)
are predicted to be negligible based on the current emissions inventory. Contributions to PM2.5 EC
from high sulfur fuel combustion (Panel 7h) are significant around the two air force bases in the
modeling domain (Travis Air Force Base and Edwards Air ForceBase). All other anthropogenic
sources contribute approximately 0.5µg m−3 of EC in the Valley with some higher concentrations
of 2 µg m−3 in the northern end of the Valley.

Figure 8 shows the predicted source contributions to 24-hour average PM2.5 OC concentrations
on December 28, 2000. Panel 8(a) shows that the high total OC concentrations occur in the urban
areas with maximum concentrations approaching 55µg m−3. In rural areas the 24-hour average
PM2.5 OC concentrations are less than 10µg m−3. The difference between urban vs. rural con-
centrations is greater for OC than EC. This is due to the fact that most of the EC originates from
on-road diesel engines and significant EC emissions from theCA Highway 99 and Interstate 5 can
be transported to nearby rural locations in a relatively short amount of time. In contrast, OC is
mainly emitted from residential wood combustion and meat cooking in urban areas. The PM2.5

OC concentrations in the rural areas are thus much lower thanthe concentrations near the urban
centers where most of the OC is emitted. Panel 8(b) shows thatthe predicted regional PM2.5 OC
contribution from fugitive dust is rather uniform in the Valley with highest concentrations in re-
gions between Fresno and Angiola. Road dust contributions are largest in the urban areas. Both
fugitive and road dust make a small contribution to the totalPM2.5 OC. Panel 8(d) shows that wood
smoke is the single largest source of PM2.5 OC in urban areas. Emissions of PM2.5 OC from diesel
and gasoline engines (Panel 8e,f and g) are lower and accountfor less than 10% of the OC in the
domain. The contribution of meat cooking to total PM2.5 OC concentrations is highest in the San
Francisco Bay area and in Fresno with reduced contributionsat Sacramento. This is likely due
to the higher wind speed in Sacramento area that dilutes primary emissions. The high sulfur fuel
combustion contribution to total PM2.5 OC is approximately 2.5µg m−3 around the two air force
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bases in the modeling region. Other sources contribute 2-9µg m−3 of PM2.5 OC in the Valley.

6 Conclusions

The internally mixed source-oriented air quality model with artificial tracers developed in this
study efficiently determines the source contributions to primary particulate matter during the win-
tertime California Regional PM10/PM2.5 Air Quality Study. The internal mixture with artificial
tracer method was validated by comparison to a simulation using the full source-oriented external
mixture particle representation. The predicted source attribution to primary PM2.5 was validated by
comparison to CMB results at Fresno and Angiola. The relative contributions from source-oriented
model predictions show good agreement with the CMB results for major source categories.

Wood smoke is the major source of primary PM2.5 OC in airborne particles in the SJV during
a severe winter stagnation event. Daily-average PM2.5 EC concentrations are dominated by diesel
engines. Diesel engines were also a significant contributorto primary PM2.5 OC. Primary PM
contributions from wood smoke increase at night, accounting for a maximum of 40% and 90% of
the total PM2.5 EC and OC, respectively. Sharp gradients of PM concentrations were predicted
around major urban areas.
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Table 1: Total gas and PM emission for a typical weekday
EC OC N(-III) S(VI) N(V) CO NO NO2 SO2

(kg/day) (kmol/day)
Paved Road Dust 0.0 10805.0 47.0 1581.0 77.0 3.0 1.0 0.0 0.0

Fugitive Dust 1698.0 25911.0 85.0 1928.0 400.0 0.0 0.0 0.0 0.0
Wood Smoke 1153.0 149316.0 146.0 549.0 549.047619.0 333.0 38.0 39.0
Diesel Engine 16915.0 4777.0 14.0 66.0 61.0 9110.0 17336.0 1983.0 410.0

Non-cat. Engine 126.0 5405.0 2.0 8.0 0.0 70141.0 1567.0 179.0 5.0
Cat.Engine 119.0 2615.0 0.0 92.0 0.0156137.0 9819.0 1123.0 0.0

Meat Cooking 44.0 9217.0 0.0 15.0 24.0 0.0 0.0 0.0 0.0
High Sulfur Fuel 210.0 1401.0 25.0 3339.0 254.0 4987.0 1433.0 164.0 662.0

Other 8988.0 37111.0 970.0 3714.0 650.043876.0 6423.0 735.0 823.0
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Figure 1: Averaged PM2.5 EC and OC fractions for each emission source category used inthe EC
and OC source apportionment calculations.
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Figure 2: Source contribution to the 24-hour average EC, OC,and primary PM2.5 on December 26,
2000 calculated using the externally mixed aerosol model and the internal mixture with artificial
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and Bakersfield.
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Figure 3: Relative source contribution to the averaged primary PM2.5 mass concentrations pre-
dicted by the CMB receptor model and the UCD/CIT source-oriented air quality model at (a)
Angiola and (b) Fresno. The contribution from mobile sourceis the sum of the contribution from
gasoline engines and diesel engines. The contribution of dust particles is not included in this
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19



 0

 5

 10

 15

 20

 25

 30

 35

 40

12/15/00

12/16/00

12/17/00

12/18/00

12/26/00

12/27/00

12/28/00

01/04/01

01/05/01

01/06/01

01/07/01

P
rim

ar
y 

P
M

2.
5 

M
as

s

(a)Dust
Gasoline Engines

Diesel Engines
Meat Cooking
Wood Burning

 0

 5

 10

 15

 20

 25

 30

 35

 40

12/15/00

12/16/00

12/17/00

12/18/00

12/26/00

12/27/00

12/28/00

01/04/01

01/05/01

01/06/01

01/07/01

P
rim

ar
y 

P
M

2.
5 

M
as

s

(b)

Figure 4: Source contribution to 24-hour average primary PM2.5 mass concentrations at Fresno
(FSF) during the IOPs calculated using (a) CMB and (b) UCD/CIT source oriented air quality
model. Units areµg m−3.
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Figure 7: Source contribution to PM2.5 EC concentrations on December 28, 2000. The scale on
each panel is different. Units areµg m−3
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Figure 8: Source contribution to PM2.5 OC concentrations on December 28, 2000 The scale on
each panel is different. Units areµg m−3
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